Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Bioorg Med Chem ; 105: 117734, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38677112

RESUMO

Although cancer and malaria are not etiologically nor pathophysiologically connected, due to their similarities successful repurposing of antimalarial drugs for cancer and vice-versa is known and used in clinical settings and drug research and discovery. With the growing resistance of cancer cells and Plasmodium to the known drugs, there is an urgent need to discover new chemotypes and enrich anticancer and antimalarial drug portfolios. In this paper, we present the design and synthesis of harmiprims, hybrids composed of harmine, an alkaloid of the ß-carboline type bearing anticancer and antiplasmodial activities, and primaquine, 8-aminoquinoline antimalarial drug with low antiproliferative activity, covalently bound via triazole or urea. Evaluation of their antiproliferative activities in vitro revealed that N-9 substituted triazole-type harmiprime was the most selective compound against MCF-7, whereas C1-substituted ureido-type hybrid was the most active compound against all cell lines tested. On the other hand, dimeric harmiprime was not toxic at all. Although spectrophotometric studies and thermal denaturation experiments indicated binding of harmiprims to the ds-DNA groove, cell localization showed that harmiprims do not enter cell nucleus nor mitochondria, thus no inhibition of DNA-related processes can be expected. Cell cycle analysis revealed that C1-substituted ureido-type hybrid induced a G1 arrest and reduced the number of cells in the S phase after 24 h, persisting at 48 h, albeit with a less significant increase in G1, possibly due to adaptive cellular responses. In contrast, N-9 substituted triazole-type harmiprime exhibited less pronounced effects on the cell cycle, particularly after 48 h, which is consistent with its moderate activity against the MCF-7 cell line. On the other hand, screening of their antiplasmodial activities against the erythrocytic, hepatic, and gametocytic stages of the Plasmodium life cycle showed that dimeric harmiprime exerts powerful triple-stage antiplasmodial activity, while computational analysis showed its binding within the ATP binding site of PfHsp90.


Assuntos
Antimaláricos , Antineoplásicos , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Harmina , Antimaláricos/farmacologia , Antimaláricos/química , Antimaláricos/síntese química , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Harmina/farmacologia , Harmina/química , Harmina/síntese química , Proliferação de Células/efeitos dos fármacos , Relação Estrutura-Atividade , Plasmodium falciparum/efeitos dos fármacos , Estrutura Molecular , Descoberta de Drogas , Relação Dose-Resposta a Droga , Linhagem Celular Tumoral , Testes de Sensibilidade Parasitária
2.
ACS Infect Dis ; 10(5): 1739-1752, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38647213

RESUMO

Reverse analogs of the phosphonohydroxamic acid antibiotic fosmidomycin are potent inhibitors of the nonmevalonate isoprenoid biosynthesis enzyme 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR, IspC) of Plasmodium falciparum. Some novel analogs with large phenylalkyl substituents at the hydroxamic acid nitrogen exhibit nanomolar PfDXR inhibition and potent in vitro growth inhibition of P. falciparum parasites coupled with good parasite selectivity. X-ray crystallographic studies demonstrated that the N-phenylpropyl substituent of the newly developed lead compound 13e is accommodated in a subpocket within the DXR catalytic domain but does not reach the NADPH binding pocket of the N-terminal domain. As shown for reverse carba and thia analogs, PfDXR selectively binds the S-enantiomer of the new lead compound. In addition, some representatives of the novel inhibitor subclass are nanomolar Escherichia coli DXR inhibitors, whereas the inhibition of Mycobacterium tuberculosis DXR is considerably weaker.


Assuntos
Aldose-Cetose Isomerases , Antimaláricos , Fosfomicina , Ácidos Hidroxâmicos , Complexos Multienzimáticos , Plasmodium falciparum , Fosfomicina/farmacologia , Fosfomicina/análogos & derivados , Fosfomicina/química , Aldose-Cetose Isomerases/antagonistas & inibidores , Aldose-Cetose Isomerases/metabolismo , Aldose-Cetose Isomerases/química , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/enzimologia , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/química , Antimaláricos/farmacologia , Antimaláricos/química , Complexos Multienzimáticos/antagonistas & inibidores , Complexos Multienzimáticos/metabolismo , Complexos Multienzimáticos/química , Cristalografia por Raios X , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Relação Estrutura-Atividade , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/enzimologia , Modelos Moleculares , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Domínio Catalítico , Oxirredutases/antagonistas & inibidores , Oxirredutases/metabolismo
3.
Angew Chem Int Ed Engl ; 63(19): e202319765, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38502093

RESUMO

The natural product chlorotonil displays high potency against multidrug-resistant Gram-positive bacteria and Plasmodium falciparum. Yet, its scaffold is characterized by low solubility and oral bioavailability, but progress was recently made to enhance these properties. Applying late-stage functionalization, we aimed to further optimize the molecule. Previously unknown reactions including a sulfur-mediated dehalogenation were revealed. Dehalogenil, the product of this reaction, was identified as the most promising compound so far, as this new derivative displayed improved solubility and in vivo efficacy while retaining excellent antimicrobial activity. We confirmed superb activity against multidrug-resistant clinical isolates of Staphylococcus aureus and Enterococcus spp. and mature transmission stages of Plasmodium falciparum. We also demonstrated favorable in vivo toxicity, pharmacokinetics and efficacy in infection models with S. aureus. Taken together, these results identify dehalogenil as an advanced lead molecule.


Assuntos
Antibacterianos , Staphylococcus aureus , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Animais , Enterococcus/efeitos dos fármacos , Estrutura Molecular , Humanos , Camundongos
4.
ACS Infect Dis ; 10(3): 1000-1022, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38367280

RESUMO

In this study, we identified three novel compound classes with potent activity against Plasmodium falciparum, the most dangerous human malarial parasite. Resistance of this pathogen to known drugs is increasing, and compounds with different modes of action are urgently needed. One promising drug target is the enzyme 1-deoxy-d-xylulose-5-phosphate synthase (DXPS) of the methylerythritol 4-phosphate (MEP) pathway for which we have previously identified three active compound classes against Mycobacterium tuberculosis. The close structural similarities of the active sites of the DXPS enzymes of P. falciparum and M. tuberculosis prompted investigation of their antiparasitic action, all classes display good cell-based activity. Through structure-activity relationship studies, we increased their antimalarial potency and two classes also show good metabolic stability and low toxicity against human liver cells. The most active compound 1 inhibits the growth of blood-stage P. falciparum with an IC50 of 600 nM. The results from three different methods for target validation of compound 1 suggest no engagement of DXPS. All inhibitor classes are active against chloroquine-resistant strains, confirming a new mode of action that has to be further investigated.


Assuntos
Antimaláricos , Malária Falciparum , Tiazóis , Humanos , Plasmodium falciparum , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Cloroquina , Antimaláricos/farmacologia , Antimaláricos/química
5.
Expert Opin Drug Discov ; 19(2): 209-224, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38108082

RESUMO

INTRODUCTION: Malaria remains a devastating infectious disease with hundreds of thousands of casualties each year. Antimalarial drug resistance has been a threat to malaria control and elimination for many decades and is still of concern today. Despite the continued effectiveness of current first-line treatments, namely artemisinin-based combination therapies, the emergence of drug-resistant parasites in Southeast Asia and even more alarmingly the occurrence of resistance mutations in Africa is of great concern and requires immediate attention. AREAS COVERED: A comprehensive overview of the mechanisms underlying the acquisition of drug resistance in Plasmodium falciparum is given. Understanding these processes provides valuable insights that can be harnessed for the development and selection of novel antimalarials with reduced resistance potential. Additionally, strategies to mitigate resistance to antimalarial compounds on the short term by using approved drugs are discussed. EXPERT OPINION: While employing strategies that utilize already approved drugs may offer a prompt and cost-effective approach to counter antimalarial drug resistance, it is crucial to recognize that only continuous efforts into the development of novel antimalarial drugs can ensure the successful treatment of malaria in the future. Incorporating resistance propensity assessment during this developmental process will increase the likelihood of effective and enduring malaria treatments.


Assuntos
Antimaláricos , Malária , Humanos , Antimaláricos/farmacologia , Malária/tratamento farmacológico , Plasmodium falciparum , Resistência a Medicamentos/genética , Descoberta de Drogas
6.
EBioMedicine ; 97: 104814, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37839134

RESUMO

BACKGROUND: Ivermectin's mosquitocidal effect and in vitro activity against Plasmodium falciparum asexual stages are known. Its in vivo blood-schizonticidal efficacy is unknown. Ivermectin's tolerability and efficacy against P. falciparum infections in Gabonese adults were assessed. METHODS: The study consisted of a multiple dose stage and a randomized, double-blind, placebo-controlled stage. Adults with asymptomatic P. falciparum parasitaemia (200-5000 parasites/µl) were enrolled. First, three groups of five participants received 200 µg/kg ivermectin once daily for one, two, and three days, respectively, and then 34 participants were randomized to 300 µg/kg ivermectin or placebo once daily for 3 days. Primary efficacy outcome was time to 90% parasite reduction. Primary safety outcomes were drug-related serious and severe adverse events (Trial registration: PACTR201908520097051). FINDINGS: Between June 2019 and October 2020, 49 participants were enrolled. Out of the 34 randomized participants, 29 (85%) completed the trial as per protocol. No severe or serious adverse events were observed. The median time to 90% parasite reduction was 24.1 vs. 32.0 h in the ivermectin and placebo groups, respectively (HR 1.38 [95% CI 0.64 to 2.97]). INTERPRETATION: Ivermectin was well tolerated in doses up to 300 µg/kg once daily for three days and asymptomatic P. falciparum asexual parasitaemia was reduced similarly with this dose of ivermectin compared to placebo. Further studies are needed to evaluate plasmodicidal effect of ivermectin at higher doses and in larger samples. FUNDING: This study was funded by the Centre de Recherches Médicales de Lambaréné and the Centre for Tropical Medicine of the Bernhard Nocht Institute for Tropical Medicine.


Assuntos
Antimaláricos , Malária Falciparum , Adulto , Feminino , Humanos , Masculino , Antimaláricos/efeitos adversos , Método Duplo-Cego , Ivermectina/efeitos adversos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Projetos Piloto , Plasmodium falciparum
7.
SAGE Open Med ; 11: 20503121231199655, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37808513

RESUMO

Objectives: To identify risk factors for loss to follow-up in periodic intravitreal anti-vascular endothelial growth factor injections for the treatment patients with diabetic macular edema, subretinal neovascularization, age-related macular degeneration, and retinal vein occlusion in a single eye center in São Paulo, Brazil. Methods: This was a retrospective longitudinal study that gathered information from 992 patients who required intravitreal anti-vascular endothelial growth factor drugs over 6 months. The authors included age, eye disease, laterality, monthly income, distance, and payment mode as risk factors. Results: Two hundred and seventy patients (29.93%) were lost to follow-up. Multivariate analysis showed age, monthly income, eye involvement, and type of medical assistance independently associated with loss to follow-up. The odds of loss to follow-up were greater among older patients than those less than 50 years (reference), p < 0.001. The odds of loss to follow-up were greater among patients who received unilateral treatment than those who received bilateral injections (p = 0.013). Concerning gross monthly income, there were no differences in the odds of the four salary strata; the data also indicate an absence of difference in the three strata of patients' distance to the clinic. Considering the diagnosis, only age-related macular degeneration showed greater odds of loss to follow-up (p = 0.016). Finally, the data suggest greater odds of loss to follow-up in private patients than in those on a health care plan (p < 0.001). Conclusion: Loss to follow-up is paramount because many patients may remain unassisted concerning their eye diseases. Identifying the risk factors is crucial to enforcing measures to increase adherence and the long-term success of the treatment.

8.
Adv Exp Med Biol ; 1439: 51-70, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37843805

RESUMO

Microorganisms are ubiquitous in diverse habitats and studying their chemical interactions with the environment and comprehend its complex relations with both hosts and environment, are crucial for the development of strategies to control microbial diseases. This chapter discusses the importance of studying microorganisms with agricultural benefits, using specialized metabolites as examples. Herein we highlight the challenges and opportunities in utilizing microorganisms as alternatives to synthetic pesticides and fertilizers in agriculture. Genome-guided investigations and improved analytical methodologies are necessary to characterize diverse and complex biomolecules produced by microorganisms. Predicting and isolating bioproducts based on genetic information have become a focus for researchers, aided by tools like antiSMASH, BiG-SCAPE, PRISM, and others. However, translating genomic data into practical applications can be complex. Therefore, integrating genomics, transcriptomics, and metabolomics enhances chemical characterization, aiding in discovering new metabolic pathways and specialized metabolites. Additionally, elicitation is one promising strategy to enhance beneficial metabolite production. Finally, identify and characterize microbial secondary metabolites remain challenging due to their low production, complex chemical structure characterization and different environmental factors necessary for metabolite in vitro production.


Assuntos
Metabolômica , Praguicidas , Metabolômica/métodos , Genômica/métodos , Redes e Vias Metabólicas , Perfilação da Expressão Gênica
9.
Bioorg Med Chem ; 94: 117468, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37696205

RESUMO

Malaria, one of the oldest parasitic diseases, remains a global health threat, and the increasing resistance of the malaria parasite to current antimalarials is forcing the discovery of new, effective drugs. Harmicines, hybrid compounds in which harmine/ß-carboline alkaloids and cinnamic acid derivatives are linked via an amide bond or a triazole ring, represent new antiplasmodial agents. In this work, we used a multiple linear regression technique to build a linear quantitative structure-activity relationship (QSAR) model, based on a group of 40 previously prepared amide-type (AT) harmicines and their antiplasmodial activities against erythrocytic stage of chloroquine-sensitive strain of P. falciparum (Pf3D7). After analysing the QSAR model, new harmicines were designed and synthesized: six amide-type, eleven carbamate-type and two ureido-type harmicines at the N-9 position of the ß-carboline core. Subsequently, we evaluated the antiplasmodial activity of the new harmicines against the erythrocytic and hepatic stages of the Plasmodium life cycle in vitro and their antiproliferative activity against HepG2 cells. UT harmicine (E)-1-(2-(7-methoxy-1-methyl-9H-pyrido[3,4-b]indol-9-yl)ethyl)-3-(3-(3-(trifluoromethyl)phenyl)allyl)urea at the N-9 position of the ß-carboline ring exhibited pronounced antiplasmodial activity against both the erythrocytic and the hepatic stages of the Plasmodium life cycle, accompanied by good selectivity towards Plasmodium.

10.
Int J Antimicrob Agents ; 62(3): 106894, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37348620

RESUMO

In the absence of a highly efficacious vaccine, chemotherapy remains the cornerstone to control malaria morbidity and mortality. The threat of the emergence of parasites resistant to artemisinin-based combination therapies highlights the need for new antimalarial drugs ideally with superior properties. The killing rate reflects the speed of action of antimalarial drugs, which can be measured in vitro through the parasite reduction ratio (PRR) assay to shortlist interesting candidates. As a standard, the in vitro PRR assay is performed by measuring [3H]hypoxanthine incorporation of Plasmodium falciparum. This methodology is restricted to specialised laboratories owing to the handling of radioactive material. In this work, we describe a sandwich enzyme-linked immunosorbent assay to detect P. falciparum histidine-rich protein 2 (HRP-2) as an alternative methodology to assess the PRR. We first validated the methodology with established antimalarial drugs (artesunate, chloroquine, pyrimethamine and atovaquone) by comparing our results with previous results of the [3H]hypoxanthine incorporation readout provided by an expert laboratory, and subsequently assessed the speed of action of four new antimalarial candidates (compound 22, chlorotonil A, boromycin and ivermectin). The HRP-2 PRR assay achieved comparable results to the [3H]hypoxanthine incorporation readout in terms of parasite growth rate over time, lag phase and parasite clearance time. In addition, parasite growth following drug exposure was quantified after 7, 14, 21 and 28 days of recovery time. In conclusion, the PRR assay based on HRP-2 is similar to [3H]hypoxanthine in determining a drug's parasite killing rate and can be widely used in all research laboratories.


Assuntos
Antimaláricos , Malária Falciparum , Parasitos , Animais , Antimaláricos/uso terapêutico , Parasitos/metabolismo , Plasmodium falciparum , Hipoxantina/metabolismo , Hipoxantina/uso terapêutico , Cloroquina/uso terapêutico , Malária Falciparum/tratamento farmacológico
11.
J Cancer Educ ; 38(3): 940-947, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36029416

RESUMO

AIM: In this study, we evaluated the impact of an integrated oral care protocol for pediatric patients undergoing antineoplastic treatment from the perspective of the multidisciplinary team, oral healthcare team, and caregivers. SUBJECT AND METHODS: This was a qualitative study carried out in the pediatric sector of a reference cancer hospital in Brazil. Focus group and individual semi-structured interview techniques were used, and the data were analyzed by the Discourse of the Collective Subject (DCS) method. RESULTS: A total of 44 professionals involved in providing care to children and adolescents with cancer and 38 caregivers were interviewed. All interviewees perceived an improvement in the patients' oral health condition. Health professionals reported a reduction in the occurrence and severity of oral mucositis (OM). Communicating with the medical team and understanding the importance of oral care to the patient's systemic condition were the greatest difficulties reported by the oral healthcare team. CONCLUSION: This implementation project contributed to establishing a complete multidisciplinary team to assist pediatric patients in all their needs during antineoplastic treatment. The integrated oral care protocol further contributed to reducing the occurrence and severity of OM by increasing its surveillance and diagnostic efficiency, which, altogether, improved the patients' quality of life.


Assuntos
Antineoplásicos , Neoplasias , Estomatite , Adolescente , Criança , Humanos , Qualidade de Vida , Neoplasias/tratamento farmacológico , Antineoplásicos/efeitos adversos , Estomatite/prevenção & controle , Estomatite/induzido quimicamente , Pacientes
12.
Int J Mol Sci ; 23(16)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36012590

RESUMO

Cancer and malaria are both global health threats. Due to the increase in the resistance to the known drugs, research on new active substances is a priority. Here, we present the design, synthesis, and evaluation of the biological activity of harmicens, hybrids composed of covalently bound harmine/ß-carboline and ferrocene scaffolds. Structural diversity was achieved by varying the type and length of the linker between the ß-carboline ring and ferrocene, as well as its position on the ß-carboline ring. Triazole-type harmicens were prepared using Cu(I)-catalyzed azide-alkyne cycloaddition, while the synthesis of amide-type harmicens was carried out by applying a standard coupling reaction. The results of in vitro biological assays showed that the harmicens exerted moderate antiplasmodial activity against the erythrocytic stage of P. falciparum (IC50 in submicromolar and low micromolar range) and significant and selective antiproliferative activity against the MCF-7 and HCT116 cell lines (IC50 in the single-digit micromolar range, SI > 5.9). Cell localization experiments showed different localizations of nonselective harmicene 36 and HCT116-selective compound 28, which clearly entered the nucleus. A cell cycle analysis revealed that selective harmicene 28 had already induced G1 cell cycle arrest after 24 h, followed by G2/M arrest with a concomitant drastic reduction in the percentage of cells in the S phase, whereas the effect of nonselective compound 36 on the cell cycle was much less pronounced, which agreed with their different localizations within the cell.


Assuntos
Antineoplásicos , Malária Falciparum , Antineoplásicos/química , Apoptose , Carbolinas/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Pontos de Checagem da Fase G2 do Ciclo Celular , Harmina , Humanos , Metalocenos/farmacologia , Relação Estrutura-Atividade
13.
Eur J Med Chem ; 238: 114408, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35551033

RESUMO

Malaria remains one of the major health problems worldwide. The lack of an effective vaccine and the increasing resistance of Plasmodium to the approved antimalarial drugs demands the development of novel antiplasmodial agents that can effectively prevent and/or treat this disease. Harmiquins represent hybrids that combine two moieties with different mechanisms of antiplasmodial activity in one molecule, i.e., a chloroquine (CQ) scaffold, known to inhibit heme polymerization and a ß-carboline ring capable of binding to P. falciparum heat shock protein 90 (PfHsp90). Here we present their synthesis, evaluation of biological activity and potential mechanism of action. The synthesized hybrids differed in the type of linker employed (triazole ring or amide bond) and in the position of the substitution on the ß-carboline core of harmine. The antiplasmodial activity of harmiquins was evaluated against the erythrocytic stage of the Plasmodium life cycle, and their cytotoxic effect was tested on HepG2 cells. The results showed that harmiquins exerted remarkable activity against both CQ-sensitive (Pf3D7) and CQ-resistant (PfDd2, PfK1, and Pf7G8). P. falciparum strains. The most active compound, harmiquine 32, displayed single-digit nanomolar IC50 value against Pf3D7 (IC50 = 2.0 ± 0.3 nM). Importantly, it also showed significantly higher activity than CQ against the resistant Plasmodium strains and had a very high selectivity index (4450). Harmiquins may act through the inhibition of heme polymerization and binding to the ATP binding site of the PfHsp90, which would explain their increased activity against the CQ-resistant Plasmodium strains. These results establish harmiquins as valuable antiplasmodial hits for future optimization.


Assuntos
Antimaláricos , Malária Falciparum , Antimaláricos/química , Cloroquina/farmacologia , Harmina/farmacologia , Heme , Humanos , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum
14.
Angew Chem Int Ed Engl ; 61(30): e202202816, 2022 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-35485800

RESUMO

The rise of antimicrobial resistance poses a severe threat to public health. The natural product chlorotonil was identified as a new antibiotic targeting multidrug resistant Gram-positive pathogens and Plasmodium falciparum. Although chlorotonil shows promising activities, the scaffold is highly lipophilic and displays potential biological instabilities. Therefore, we strived towards improving its pharmaceutical properties by semisynthesis. We demonstrated stereoselective epoxidation of chlorotonils and epoxide ring opening in moderate to good yields providing derivatives with significantly enhanced solubility. Furthermore, in vivo stability of the derivatives was improved while retaining their nanomolar activity against critical human pathogens (e.g. methicillin-resistant Staphylococcus aureus and P. falciparum). Intriguingly, we showed further superb activity for the frontrunner molecule in a mouse model of S. aureus infection.


Assuntos
Antimaláricos , Malária Falciparum , Staphylococcus aureus Resistente à Meticilina , Animais , Antibacterianos/farmacologia , Antimaláricos/farmacologia , Compostos de Epóxi/farmacologia , Humanos , Camundongos , Testes de Sensibilidade Microbiana , Staphylococcus aureus
15.
Eur J Med Chem ; 224: 113687, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34274829

RESUMO

The rise of the resistance of the malaria parasite to the currently approved therapy urges the discovery and development of new efficient agents. Previously we have demonstrated that harmicines, hybrid compounds composed from ß-carboline alkaloid harmine and cinnamic acid derivatives, linked via either triazole or amide bond, exert significant antiplasmodial activity. In this paper, we report synthesis, antiplasmodial activity and cytotoxicity of expanded series of novel triazole- and amide-type harmicines. Structure-activity relationship analysis revealed that amide-type harmicines 27, prepared at N-9 of the ß-carboline core, exhibit superior potency against both erythrocytic stage of P. falciparum and hepatic stages of P. berghei. Notably, harmicine 27a, m-(trifluoromethyl)cinnamic acid derivative, exhibited the most favourable selectivity index (SI = 1105). Molecular dynamics simulations revealed the ATP binding site of P. falciparum heat shock protein 90 as a druggable binding location, confirmed the usefulness of the harmine's N-9 substitution and identified favourable N-H … π interactions involving Lys45 and the aromatic phenyl unit in the attached cinnamic acid fragment as crucial for the enhanced biological activity. Thus, those compounds were identified as promising and valuable leads for further derivatization in the search of novel, more efficient antiplasmodial agents.


Assuntos
Antimaláricos/síntese química , Alcaloides Indólicos/química , Amidas/química , Antimaláricos/farmacologia , Sítios de Ligação , Eritrócitos/parasitologia , Proteínas de Choque Térmico HSP90/química , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Alcaloides Indólicos/farmacologia , Estágios do Ciclo de Vida/efeitos dos fármacos , Simulação de Dinâmica Molecular , Plasmodium berghei/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Relação Estrutura-Atividade , Triazóis/química
16.
Life Sci ; 281: 119768, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34186042

RESUMO

AIMS: The purpose of this work was to study the effects of mesenchymal stem cells conditioned medium (MSC CM) treatment in animals with cholestatic liver fibrosis. MATERIALS AND METHODS: We induced cholestatic liver fibrosis by bile duct ligation in C57Bl/6 mice. In the 5th and 6th days after bile duct ligation proceeding, conditioned medium obtained of cultures of mesenchymal stem cells derived from adipose tissue was injected in the animals. Blood levels of hepatic transaminases, alkaline phosphatase and albumin were measured in each group. Analysis of collagen deposition was realized by Picro Sirius red staining and cytokine profiling was performed by cytometric bead array (CBA). KEY FINDINGS: Our results showed that MSC CM treatment decreased levels of hepatic enzymes and collagen deposition in the liver. After MSC CM treatment, profibrotic IL-17A was decreased andIL-6 and IL-4 were increased. SIGNIFICANCE: In summary, MSC CM treatment demonstrated therapeutic potential to cholestatic liver fibrosis, favoring matrix remodeling and cytokine profile towards liver regeneration.


Assuntos
Colestase/patologia , Cirrose Hepática/patologia , Células-Tronco Mesenquimais/citologia , Tecido Adiposo/citologia , Animais , Colestase/metabolismo , Colágeno/metabolismo , Meios de Cultivo Condicionados , Citocinas/metabolismo , Citometria de Fluxo , Cirrose Hepática/metabolismo , Masculino , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
17.
Molecules ; 26(8)2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33921170

RESUMO

Malaria is one of the most life-threatening infectious diseases and constitutes a major health problem, especially in Africa. Although artemisinin combination therapies remain efficacious to treat malaria, the emergence of resistant parasites emphasizes the urgent need of new alternative chemotherapies. One strategy is the repurposing of existing drugs. Herein, we reviewed the antimalarial effects of marketed antibiotics, and described in detail the fast-acting antibiotics that showed activity in nanomolar concentrations. Antibiotics have been used for prophylaxis and treatment of malaria for many years and are of particular interest because they might exert a different mode of action than current antimalarials, and can be used simultaneously to treat concomitant bacterial infections.


Assuntos
Antimaláricos/uso terapêutico , Reposicionamento de Medicamentos/métodos , Animais , Antibacterianos/uso terapêutico , Resistência a Medicamentos/genética , Humanos , Malária/fisiopatologia , Plasmodium falciparum/genética , Plasmodium falciparum/patogenicidade
18.
Life Sci ; 278: 119510, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33865879

RESUMO

Currently, the world has been devastated by an unprecedented pandemic in this century. The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the agent of coronavirus disease 2019 (COVID-19), has been causing disorders, dysfunction and morphophysiological alterations in multiple organs as the disease evolves. There is a great scientific community effort to obtain a therapy capable of reaching the multiple affected organs in order to contribute for tissue repair and regeneration. In this regard, mesenchymal stem cells (MSCs) have emerged as potential candidates concerning the promotion of beneficial actions at different stages of COVID-19. MSCs are promising due to the observed therapeutic effects in respiratory preclinical models, as well as in cardiac, vascular, renal and nervous system models. Their immunomodulatory properties and secretion of paracrine mediators, such as cytokines, chemokines, growth factors and extracellular vesicles allow for long range tissue modulation and, particularly, blood-brain barrier crossing. This review focuses on SARS-CoV-2 impact to lungs, kidneys, heart, vasculature and central nervous system while discussing promising MSC's therapeutic mechanisms in each tissue. In addition, MSC's therapeutic effects in high-risk groups for COVID-19, such as obese, diabetic and hypertensive patients are also explored.


Assuntos
COVID-19/terapia , Transplante de Células-Tronco Mesenquimais/métodos , Animais , COVID-19/imunologia , COVID-19/patologia , Humanos , Imunomodulação , Células-Tronco Mesenquimais/imunologia , SARS-CoV-2/imunologia , SARS-CoV-2/isolamento & purificação
19.
J Med Chem ; 64(6): 3035-3047, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33666415

RESUMO

3-Hydroxypropanamidines are a new promising class of highly active antiplasmodial agents. The most active compound 22 exhibited excellent antiplasmodial in vitro activity with nanomolar inhibition of chloroquine-sensitive and multidrug-resistant parasite strains ofPlasmodium falciparum (with IC50 values of 5 and 12 nM against 3D7 and Dd2 strains, respectively) as well as low cytotoxicity in human cells. In addition, 22 showed strong in vivo activity in thePlasmodium berghei mouse model with a cure rate of 66% at 50 mg/kg and a cure rate of 33% at 30 mg/kg in the Peters test after once daily oral administration for 4 consecutive days. A quick onset of action was indicated by the fast drug absorption shown in mice. The new lead compound was also characterized by a high barrier to resistance and inhibited the heme detoxification machinery in P. falciparum.


Assuntos
Amidinas/química , Amidinas/farmacologia , Antimaláricos/química , Antimaláricos/farmacologia , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Amidinas/farmacocinética , Amidinas/uso terapêutico , Animais , Antimaláricos/farmacocinética , Antimaláricos/uso terapêutico , Linhagem Celular , Desenho de Fármacos , Humanos , Malária/tratamento farmacológico , Camundongos , Testes de Sensibilidade Parasitária , Plasmodium berghei/efeitos dos fármacos , Propano/química , Propano/farmacocinética , Propano/farmacologia , Propano/uso terapêutico
20.
Front Cell Infect Microbiol ; 11: 802294, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35096650

RESUMO

Boromycin is a boron-containing macrolide antibiotic produced by Streptomyces antibioticus with potent activity against certain viruses, Gram-positive bacteria and protozoan parasites. Most antimalarial antibiotics affect plasmodial organelles of prokaryotic origin and have a relatively slow onset of action. They are used for malaria prophylaxis and for the treatment of malaria when combined to a fast-acting drug. Despite the success of artemisinin combination therapies, the current gold standard treatment, new alternatives are constantly needed due to the ability of malaria parasites to become resistant to almost all drugs that are in heavy clinical use. In vitro antiplasmodial activity screens of tetracyclines (omadacycline, sarecycline, methacycline, demeclocycline, lymecycline, meclocycline), macrolides (oleandomycin, boromycin, josamycin, troleandomycin), and control drugs (chloroquine, clindamycin, doxycycline, minocycline, eravacycline) revealed boromycin as highly potent against Plasmodium falciparum and the zoonotic Plasmodium knowlesi. In contrast to tetracyclines, boromycin rapidly killed asexual stages of both Plasmodium species already at low concentrations (~ 1 nM) including multidrug resistant P. falciparum strains (Dd2, K1, 7G8). In addition, boromycin was active against P. falciparum stage V gametocytes at a low nanomolar range (IC50: 8.5 ± 3.6 nM). Assessment of the mode of action excluded the apicoplast as the main target. Although there was an ionophoric activity on potassium channels, the effect was too low to explain the drug´s antiplasmodial activity. Boromycin is a promising antimalarial candidate with activity against multiple life cycle stages of the parasite.


Assuntos
Antimaláricos , Malária Falciparum , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antimaláricos/farmacologia , Boratos , Malária Falciparum/parasitologia , Plasmodium falciparum
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...